The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  0  1  1  X 2X+2  X  0  X 2X+2  X  X  X 2X  X  2  X  X  X  X 2X  2  1  1  1  1  1  1  1  1  X  X  1  X  X  1  1  1  1  1  1  1  2  0  2  2  2  2  X  0 2X  X  X  X 2X  0  X  2  X  2  X  1
 0  X 2X+2 X+2  0 X+2 2X+2 3X 2X 3X+2  2 3X 2X 3X+2  2  X  0 X+2 2X+2 3X  0 X+2 2X+2 3X 2X 3X+2  2  X 2X 3X+2 X+2  X  2  X 3X  X X+2  X 3X  X  0 2X+2 3X+2  X  X  X 2X  2 3X+2  X  X  X  0 2X+2 X+2 3X 2X  2  0 2X+2  0 2X+2 3X 2X  2 X+2 2X  2 3X+2  X 3X+2  X 2X+2  2  0 2X 2X+2  2 3X  X  X X+2 3X+2  X  X  X 3X  0 X+2  2 2X+2  0
 0  0 2X 2X 2X  0  0 2X 2X 2X  0  0  0  0 2X 2X  0  0 2X 2X 2X 2X  0  0 2X 2X  0  0  0  0 2X  0 2X 2X  0 2X  0 2X 2X  0 2X 2X 2X  0  0 2X 2X 2X  0 2X 2X  0  0  0  0  0  0  0 2X 2X  0  0 2X  0  0 2X 2X 2X 2X  0  0 2X 2X 2X 2X 2X  0 2X  0 2X  0  0  0  0 2X  0 2X  0 2X  0  0  0

generates a code of length 92 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 90.

Homogenous weight enumerator: w(x)=1x^0+17x^90+86x^91+43x^92+70x^93+25x^94+2x^95+3x^96+2x^97+1x^98+1x^100+5x^102

The gray image is a code over GF(2) with n=736, k=8 and d=360.
This code was found by Heurico 1.16 in 0.906 seconds.